Fix for Life. The Development of a New Embalming Method to Preserve Life-like Morphology

A.J. van Dam¹, J.C. van Munsteren², and M.C. DeRuiter²

¹Museum of Anatomy, Directorate of Education, Leiden University Medical Centre
²Dept of Anatomy and Embryology, Leiden University Medical Centre

Introduction

In medicine, the use of embalmed bodies is essential for studying anatomy and for training (new) surgical skills. Almost all embalming fluids worldwide in use contain formalin and phenol (Benkhadra et al. 2011), of which formalin is responsible for fixation and phenol for preservation of the cadaver. Fixation with standard concentrations of formaldehyde (4%) hardens the tissue and severely decreases the flexibility of tissues and joints. Due to its high reactivity, phenol seems to have a negative effect on tissue colour differentiation. Both are hazardous substances which conditions of use and disposal routes are strictly regulated (Toxnet - US National Library of Medicine, http://toxnet.nlm.nih.gov).

As the anatomical community is more aware of the occupational risks involved and of the high costs to reduce levels of exposure, the interest for low-hazardous alternatives grows. Furthermore, in surgical training there is a growing demand for embalmed cadavers with life-like morphology as a safer and more durable alternative for fresh (frozen) cadavers.

Project aims

The Fix for Life project aims to develop a low-hazardous embalming method preserving life-like morphology. To achieve this the following criteria should be met:

• Low-hazardous composition
• Reduction of formaldehyde
• Exclusion of phenol
• Good fixation
• Broad spectrum antimicrobial efficacy
• Life-like morphology
• Suitable for dissection and surgical (endoscopic / minimally invasive) techniques

Materials and methods

The methodology and choice of materials is based on a pilot study by Cleypool (2010):

• Surplus rats (4-24 hours post mortem)
• Control: fresh frozen rat
• For comparison, 2 rats are embalmed according to the standard procedures of the Academic Medical Centre, Amsterdam (AMC) and the Leiden University Medical Centre (LUMC)
• 15 experimental embalming recipes/methods
• Perfusion by pump or drip bottle through the carotid artery (1-4 hours)
• Storage in plastic bags with wetting agent and/or by immersion in glass containers
• After 2-3 months the morphological properties (consistency, colour, flexibility and suitability for dissection and/or surgical techniques) of the rats are rated by an expert panel.

Conclusions

The newly developed and experimentally tested “Fix for Life” method can provide in well preserved cadavers with life-like morphology for education and training in medicine over a prolonged period of time without the risk of exposure to pathogens when using fresh (frozen) cadavers or to toxic levels of formaldehyde and phenol when applying conventional embalming methods.

References


Acknowledgments

The authors would like to express their gratitude to Cindy Cleypool. Without her initial work on the methodology this project would never have made such progression.

Also special thanks to Prof. Dr George Maat, Prof. Dr Rob Pechmann, Prof. Dr Jan-Bas Prins, Dr Egbert Lakke, Dr Daniela Salvatori, and Fred van Immerseel who have been willing to take seat in the expert panel to review and rate the experimental results.

Contact: Andries J. van Dam
Email: a.j.van_dam@lumc.nl

Poster initially presented at the Biotechnical Days
12-14 November 2013, Egmond aan Zee, Netherlands